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D E S I G N  OF R E I N F O R C E D  P L A T E S  U N D E R  

C O N S T R A I N T S  O N  S T R E N G T H  P R O P E R T I E S  

A. G. Kolpakov UDC 539.4:678.067 

The stress-strain state of a shell reinforced by high-modulus fibers was analyzed by Annin et al. [1], 
Kalamkarov and Kolpakov [2], and Annin et al. [3] using the asymptotic method of averaging in the theory 
of elastic shells combined with the approximate method of solving local problems of the averaging theory [4]. 
In the present paper, the results obtained are applied to the solution of design problems. 

1. Ca lcu la t ion  of Re in fo rced  Pla tes .  We first present the previous results [1-4] used in studying 
the elastic problem for a thin composite layer whose characteristic thickness is e << 1. In [1-4], the composite 
formed by the laminates of parallel fibers (see Fig. 1) was considered. The fibers in the layers are at the same 
distance 6i, and the layers are 6b distant from one another. 

The limiting (when e ---, 0) mechanical characteristics of the plate are calculated based on the solution 
of local problems in a cell of a periodic-structure plate [1-4]. In the case considered, for an approximate 
solution of local problems, one can use the model of rigid fibers in a soft matrix, which was proposed by the 
author [4] based on the following assumptions: 

(1) the influence of the matrix on displacements of the fiber frames can be ignored; 
(2) displacements of the matrix are determined from the solution of the elastic problem under the 

condition of ideal cohesion at the fiber-matrix interface. 
The exact solution of the problem in Sec. 1 was derived by Kalamkarov [5]. The problem of Sec. 2 can 

be solved only by numerical methods. However, it is possible to estimate matrix strains, as was done in [1--4]. 
Rigidities of Reinforced Plates. In accordance with the model of rigid fibers in a soft matrix, the tensile 

rigidity S~ the skew-symmetric part of the rigidities S~jkt, and the flexural rigidities S~k t of a plate are of 
the form [5] 

N N 

fl=l 13=1 (1.1) 
N 

s?w(u ) = E:  bijkt( a)ciw(  )7, 
/3=1 

where 7 = 7rR2/[( 2R + 6f)(2R + 6b)]; i, j ,  k, l = 1 and 2; u is the design variable which includes the number 
of reinforcing families (N) (if it is not fixed), the fiber radius (J~), the distance between the fibers in the 
reinforcing layer (~/), the distance between the layers of reinforcing fibers (6b), the angle between the axes of 
fibers of the/3-family and the Oxx axis (qo#) (see Fig. 1); a#, bijkt, and cijkt are the functions given in [1, 2], 
bijkl and Cijkl depending only on the angle of fiber stacking in a given layer, whereas a~ depends only on the 
remoteness of the/3th fiber layer from the Oxlx2 plane. 

Local Stresses and Fiber Strains. The following formulas for calculation of the axial stresses in fibers ~ry 
(the remaining stresses in fibers are zero [11) were derived in [1-5]: 

= E: l:l](e,j + x3p,j) (1.2) 
i,j=l,2 
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Fig. 1 

in the/3th layer of reinforcing fibers. Here eil are the tensile, compressive, and shear strains in the plate plane, 
Pi.i are the bending and torsional strains which are calculated using the solution of the plate deformation 
problem with the elastic constants (1.1) according to standard formulas [6], E$ is the Young's modulus of the 
fiber material, and l r is the directing vector of the/Tth family of fibers. 

Local Stresses and Strains of the Matrix. The general formulas for local displacements of the fiber skeleton 
are given in [1, 2]. They allow one to analyze local displacements of a set of fibers as a result of their expansion 
into interfiber displacements caused by a mutual displacement of the fiber within one reinforcing layer and 
into interlayer displacements caused by mutual displacements of the neighboring layers of reinforcing fibers. 

The result of the analysis performed in [1, 2] is given in Table 1, in which the estimates of microscopic 
strains of the matrix e~', which correspond to the averaged strains eij and curvatures pij (7 in Table 1 is the 
strain-mechanism number) are presented. 

The estimates in Table 1 are more exact compared with those given in [1, 3] (Table 1 does not contain 
terms with Vw). The presence of the Vw-containing terms (overestimating the result) in [1, 3] is caused by 
the fact that the global bending strains of a plate were not taken into account in [1, 3]. One can derive these 
estimates from [1, 3] if one takes into consideration that the deflection of the plate as a rigid body does not 
change strains and, at the same time, make Vw vanish at the point considered if this point is chosen properly. 

As follows from Table 1, to plate macrostrains corresponds the strain spectrum of the matrix at the 
local level. These local strains are associated with the local structure of the plate. 

2. Ave raged  S t r e n g t h  Cr i te r ion .  Let us take the local strength criterion of the fiber in the form 

Io'fl ~< a}, (2.1) 

where a~ is the strength of the fiber. 
Substituting formula (1.2) into (2.1), we obtain 

E l:l:(eij f/3---- Ef +x3PiJ)llo'* f ~<I (2.2) 
i,j=I,2 l-- 

in the Bth layer of reinforcing fibers. 
For the matrix, there are only the strain estimates. In view of this, we use the nonfailure criterion in 

the following form: 
If the condition 

-t* (2.3) leVI eb 

7' is satisfied for e~ (the upper estimate of the strain), where e b is the ultimate strain of the matrix, which 
corresponds to the 7th mechanism of matrix deformation, the matrix does not fail. 

Substitution of the estimate of e~ from Table 1 into (2.3) yields 

= leTI/eT* 1, (2.4) 
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TABLE 1 

7 Strain mechanism Estimate 

Interfiber tensions 

Interfiber shears 

Interfiber torsions 

Interlayer tensions 

Interlayer torsions 

Ix31 IPO'I + I~j l  

(elz31~ + lz31)lP,.il + 
(elz31~31lz3l)l,oi.d + lei'~lleO'l 

+ 

(,R + + Ip,A +  le,jt 

where e~ r is the est imate which corresponds to the 7 th  mechanism of local strain of the matrix.  
Satisfaction of the inequality 

S(u, eij,Pij) = m a x { f l , . . . ,  fN, g l , - . . ,  g5} ~< 1 (2.5) 

guarantees the nonfailure of all components  of the composite. Criterion (2.5), which contains the global 
(average) strains eij and the  curvatures pii of the plate, is called an averaged criterion [4, 7-10]. 

3. D e s i g n  of  a P l a t e  w i t h  G i v e n  S t r a i n - S t r e n g t h  C h a r a c t e r i s t i c s .  Formulation of the Problem: 
it is necessary to reveal whether  it is possible to create a plate with a required set of rigidity and strength 
characteristics using a given set of fibers. If the answer is positive, one should find the solution - -  design of a 
composite with prescribed characteristics. 

Formalization of the Problem: it is necessary to solve the equation 

S~-kt(u ) = S~.kt [(v,i,j,k,l) E A] (3.1) 

(A is the set of given rigidities; as a rule, not all rigidities are given) with the  following limitations on the 
strength 

S(u,  eij, Pij) ~ 1 (3.2) 

and on the design variables 

mini ~< ui <~ maxi. (3.3) 

Here S~k I are the given rigidities and eij and pij are the given strains and curvatures which should be sustained 
by the plate. The  solution is performed relative to the vector u = (R, 65, 6b, ~1,. . . ,  qON) (with a given number  
of reinforcing families N). 

One possible method  of solving problem (3.1)-(3.3) is its reduction to the minimization problem. Let 
us write the function 

IS kz( )- s kzl 
F ( u )  = ~ Ai~.kl ---ff;--- + P (u ) ,  (3.4) 

i,j,k,t=l, 2 Sijkt 
v=0, l, 2 

where A~'jk I = 1 if the rigidity S~.kt is among the given ones, otherwise AiVjkt = 0; P (u )  is the penalty for 
violation of conditions (3.2): P ( u )  = 0 if condition (3.2) is satisfied for u, P ( u )  = const > 0 if it is not 
satisfied; and S~*kt are the characteristic values of the rigidities. It is evident tha t  u is the solution of problem 
(3.1)-(3.3) if F ( u )  = 0. Since F ( u )  ~> 0 by definition, the problem is reduced to the search for the global 
minimum of the function (3.4). 

4. A l g o r i t h m s  a n d  S o f t w a r e .  As algorithms of search for the global min imum of the function (3.4), 
we used the following ones: 

(a) the algorithm of a random search, which was proposed by Annin and Kolpakov [9]; 
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TABLE 2 

Time and accuracy of the solution Problem 
Algorithm (a) Algorithm (b) 

N o .  1 

No. 2 
2 min, 1% 
2 rain, 1% 

9 min, 3% 
3.5 min, 3% 

(b) the classical algorithm of gradient drop with a random choice of the initial point (used as a test 
one). 

Algorithm a turned out to be convenient from the viewpoint of visual control of the minimization 
process. Table 2 gives an idea of the high-speed response of the algorithms [an IBM 486 DX, 66 MHz with 
an ari thmetic processor was employed, and, as the time solution, we took the duration of the procedure for 
realization of algorithm (a) or (b), respectively]. 

We chose the following problems as test problems: 
Problem No. 1. Fiber, E f  = 1 �9 1011 Pa, v = 0.2, the number of reinforcing fibers is N = 4, and 

ei j  = p i j  = 0 (design without limitations on strength properties). It is required to design a composite with 
0 2 S~ = 1.107 and $2222 = 1- 107 (rigidities in the plate plane) and with Sl l l l  = 1 �9 10 -1 and '-'r = 2.10 -1 

(flexural rigidities). 
Problem No. 2. Fiber, the restrictions and the rigidities are the same as in problem No. 1; ell = 0.02 

and el2 = e22 = 0 and pll = 0.02 and p12 = p22 = 0. The ult imate deformation of the fibers is e~ = 0.02, and 
-/-, 

that of the matrix is ef  = 0.05. The design is performed with allowance for strength properties. 
5. E s t i m a t i o n  o f  P a r a m e t e r s  in t h e  Des ign .  In solving the design problem, the difficulty arises of 

how to predict the possible values of the rigidities S~k/(u ). The above procedure is oriented to a designer who 
knows exactly which characteristics are required, and will be satisfied if the designer obtains the solution, if 
it exists, or if the designer concludes that there is no solution. In practice, as early as the first stage of design, 
it is desirable to get an idea of the possible values of the quantities to draw a final conclusion on their values 
at the second stage. 

The algorithms and programs used can be improved with a view to obtaining those that  allow one to 
estimate the interval of possible values of the quantity considered, with other quantities specified. In the above 
consideration, we can use other similar functions [for example, the margin of the strength criterion S(u)  and 
the volume content of fiber] as specified characteristics. The margin of the strength criterion is determined 
by condition (2.5) and can be included in the number of specified (and, in practice, this is more interesting 
than the estimated ones, see Sec. 4) characteristics along with the rigidities. 

In practice, the volume content of fibers 7(u) is of interest owing to the fact that  it determines to a 
considerable extent the weight and cost characteristics of the composite. 

6. E x a m p l e s .  EXAMPLE 1. Let us take E I = 1 �9 1011 Pa, v = 0.2, a~ = 0.02.1011 Pa, and e b = 0.02; 

the constraints on the geometrical sizes are as follows: 0 < R < 1 m -4, 0 < 6f < 1 m -4, 0 < ~b < 1 m -4, 
and 0 < ~Z < 3.14 rad; the number of reinforcing layers is N = 4; and the strains are as follows: ell = 0.01, 
el2 = e22 = 0, and p i j  = O. The design is performed taking into account the strength criterion. 

In what follows, we present the protocol of the solution. 
0 0 1. We set $1111 1 107 and estimate 0 . = �9 $2222 , we obtain 0 < S~222 < 11.058- 107. 
0 2 2. We u s e  $2222 = 5" 107 and estimate the flexural rigidity $2111; we have 2.845 < $1111 < 24.241.10 -1. 

2 3. We u s e  S l l l l  15 10 -1 and estimate the flexural rigidity 2 . 2 = �9 $2222 , we obtain 15.311 < $2222 < 

51.767.10. 
4. We u s e  $2222 = 20  �9 10 - 1  and estimate the margin of the strength criterion. For it, we have the 

coincidence of the minimum and maximum values. Both are equal to 0.5. 
0 0 2 5. Let us solve the problem with $1111 = 1" 107,  $2222 = 5 �9 107, Sl111 = 15 �9 10 -1, and $22222 __. 20"  10 - 1  , 

without fixation of the margin of strength. We obtain the following parameters: R = 0.69 m -4, 61 = 0.94 m -4, 
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TABLE 3 

S o  o o $2222 S1212 

0 0 

13.61 14.36 43 

0 0 SH12 S,222 

-4.71 -4.38 
4.53 4.76 

52111 2 2 $2222 S,212 

o5 o o 
1 .82 1 .66 38.73 

S?I  12 

-238.66 
239.29 

and 6b = 0.38 m -4, the angles of fiber stacking are 1.20, 2.01, 1.76, and 0.62 rad. 
The local margins of the strength criterion for this project are as follows: in the fibers, f l  = 0.07, 

]'2 = 0.09, f3 = 0.02, and ]'4 = 0.33; the interfiber tensile strains in the matrix (see Table 1) are equal to 
0.50, the interfiber shear and torsion strains are 0.50, the interlayer tensile strains are 0.50; and the interlayer 
torsion strains are 0.50. 

EXAMPLE 2. We set E f  = 1 �9 1011 Pa and v = 0.2; the number of reinforcing layers is N = 6; 
the limitations on the sizes are as follows: 0 < R < 1 m -4, 0 < gf < 1 m -4, 0 < 6b < 1.0 m -4, and 
0 < ~# < 3.14 rad; the strains are as follows: e i i =  Pii = 0. The strength is not taken into account. 

1. We set S~  = S~ = 1 - 107 and estimate the volumetric content of the fiber; we obtain the 
estimate 0.055 < 7 < 0.342. 

0 0 2. We solve the problem with S n l  1 = S~222 = 1 �9 107 and 7 = 0.06, which is close to the minimum 
value of 7- We obtain the following parameters: R = 1.00 m -4,/~f = 1.00 m -4, and 6b = 0.13 m -4, and the 
angles of fiber stacking are as follows: 1.48, 3.03, 0.20, 1.72, 3.09, and 1.41 rad. 

EXAMPLE 3. Calculation of the estimates of the possible values of the plate's rigidities which can be 
obtained using fibers with EI = 1 �9 1011 Pa, v = 0.2, N = 4, and ei j= Pii = 0 (there are no strength 
limitations); the restrictions on the geometrical sizes are as follows: 0 < R < 1 m -4, 0 < 6f < 1 m -4, 
0 < 6b < 1 m -4, and 0 < ~o B < 3.14 rad; the restrictions on the other parameters are absent. 

The results are given in Table 3, where the minimum and maximum rigidity (rigidities in the plane 
and .flexural ones) values are given. 

Table 3 also enables one to evaluate the accuracy of the estimates obtained. Owing to the symmetry 
v v v of the problem, the exact estimates of S~'111 and S~222 m u s t  coincide, and the intervals of the Sill2 and S1222 

values must be symmetric.  
7. T h e r m o e l a s t i c i t y  of  R e i n f o r c e d  P l a t e s .  Let the fibers have the coefficient of thermal expansion 

a f  and the matrix ~b. For the thermoelasticity problem, it is possible to perform an analysis similar to that for 
the elastic problem. This analysis is based on the analog of formula (1.3) which relates the local displacements 
u e to the temperature  0 Ill: 

U" = S ( X / 8 ) 0 ( X l , X 2 )  , ( 7 . 1 )  

where S is the solution of the cellular problem of thermoelasticity for plates. 
For loose frames of fibers, the solution of the cellular problem of thermoelasticity is given in [1]. It 

corres~:onds to the thermal expansion of each fiber. Following from this fact, we obtain the following formulas 
and estimates. 

The thermal-expansion constants in the plate plane S ~ and the flexural ones S~j are given by the formulas 

N N 
S0j(U) = otfEf Z sij(TB)7, s l j ( u ) =  afEf  ~ sij(~pB)aB7 , (7.2) 

f l = l  f l = l  

where i,j = 1 and 2, the function sij is given in [I]. The first formula in (7.2) holds true if S~ # 0, 
and if S~ = 0, one should set S~ = o~bEb (Eb is the Young's modulus of the matrix).  The latter case 
corresponds to the absence of reinforcement in the direction of the Oxi axis; in practice, this does not occur, 
but it should be taken into consideration in solving the problem. 

By thermal-expansion constants, we mean the coefficients at O in the governing equations. The 
0 - I  0 coefficients of thermal expansion of the plate are {Sijkt } {Skt} and {S2.kt}-l{S~t} [11, 12]. 
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Local Stresses in Fibers. The local stresses in fibers are calculated using the replacement of eij by 
eij - afOgij in (1.2). 

Local Stresses in the Matrix. For loose frames of fibers, formula (7.1) describes its increase in the scale 
1 : 1 + (~f0. This uniform increase does not lead to a mutual displacement of the frame points. Like the 
frame, the matrix undergoes a strain estimated as triO. The natural thermal deformations of the matrix are 
estimated as eb0. As a result, incompatibility in the thermal strains of the fiber and of the matrix, which is 
estimated as (o~f - (~b)O, arises, and the stresses which are caused by this incompatibility are estimated as 
E b ( ~ I  - ab)0.  

One should bear in mind that the mechanism described above does not work in the nonreinforced 
directions (for example, across the plate). In these directions, the fibers and the matrix expand freely, and 
this free expansion yields zero stresses having no effect on the strength. In this connection, this case may be 
omitted. 

The formulation of the design problem with allowance for thermoelastic characteristics and stresses 
and the methods of its solution are not different from those presented in this study. 
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